Soil Moisture Retrieval Model Design with Multispectral and Infrared Images from Unmanned Aerial Vehicles Using Convolutional Neural Network

Author:

Seo Min-GukORCID,Shin Hyo-SangORCID,Tsourdos AntoniosORCID

Abstract

This paper deals with a soil moisture retrieval model design with airborne measurements for remote monitoring of soil moisture level in large crop fields. A small quadrotor unmanned aerial vehicle (UAV) is considered as a remote sensing platform for high spatial resolutions of airborne images and easy operations. A combination of multispectral and infrared (IR) sensors is applied to overcome the effects of canopies convering the field on the sensor measurements. Convolutional neural network (CNN) is utilized to take the measurement images directly as inputs for the soil moisture retrieval model without loss of information. The procedures to obtain an input image corresponding to a certain soil moisture level measurement point are addressed, and the overall structure of the proposed CNN-based model is suggested with descriptions. Training and testing of the proposed soil moisture retrieval model are conducted to verify and validate its performance and address the effects of input image sizes and errors on input images. The soil moisture level estimation performance decreases when the input image size increases as the ratio of the pixel corresponding to the point to estimate soil moisture level to the total number of pixels in the input image, whereas the input image size should be large enough to include this pixel under the errors in input images. The comparative study shows that the proposed CNN-based algorithm is advantageous on estimation performance by maintaining spatial information of pixels on the input images.

Funder

Science and Technology Facilities Council

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3