Optimizing Overhead Irrigation Droplet Size for Six Mississippi Soils

Author:

Ferguson J. ConnorORCID,Krutz L. Jason,Calhoun Justin S.,Gholson Drew M.ORCID,Merritt Luke H.,Wesley Michael T.,Broster Kayla L.,Treadway Zachary R.

Abstract

Optimizing overhead irrigation practices will ensure that water loss is minimized, and each unit of water is used most effectively by the crop. In order to optimize overhead irrigation setup, a study was conducted over two years in Mississippi to quantify the optimal overhead irrigation duration and intensity for six soil types commonly found in row-crop production regions in the state. Each soil type was transferred to containers and measured for total water infiltration and water infiltration over time using a two-nozzle rainfall simulator in a track sprayer. The rainfall simulator was calibrated to apply 2.1 mm of water per minute. The rainfall simulator ran on a 2.4 m track for 90 s, with 3.2 mm total water applied during that time. After the 90 s overhead irrigation event, each container was undisturbed for 150 s and assessed for irrigation penetration through the soil profile. Commercially available irrigation nozzles were measured for droplet size spectrum. Results showed that across soil type, organic matter was the primary factor affecting water infiltration through the profile, followed by soil texture. Irrigation nozzle volumetric median droplet sizes ranged from 327 µm to 904 µm. The results will improve overhead irrigation setup in Mississippi, improving irrigation water use efficiency and reducing losses from soil erosion over the application of water and reduced crop yield.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3