Enhancing Faba Bean Yields in Alpine Agricultural Regions: The Impact of Plastic Film Mulching and Phosphorus Fertilization on Soil Dynamics

Author:

Gu Yanjie1,Xu Qiuyun1,Zhou Weidi1,Han Chenglong2,Siddique Kadambot H. M.3ORCID

Affiliation:

1. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

3. The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia

Abstract

Plastic film mulching is widely used in water and temperature-limited regions to enhance crop yields. Phosphorus (P) fertilization can address deficiencies in soil P availability. In this four-year field experiment conducted in an alpine agricultural area, we explored the effects of nitrogen (N) and P supply imbalance on faba bean cultivation, particularly examining intensified N competition between soil microbes and plants. The randomized block design comprised three film mulching treatments—no film mulching with flat planting (NMF), double ridges and furrows mulched with one plastic film (DRM), and three ridges and furrows mulched with one plastic film (TRM)—and three P levels—P0 (0 kg P ha−1), P1 (9.10 kg P ha−1), and P2 (18.2 kg P ha−1). The results indicated that NMF enhanced soil available N and microbial biomass N (MBN) during early growth stages, consequently improving faba bean yield, nodule weight, total N, and microbial biomass carbon (MBC) compared to DRM and TRM. DRM and TRM exhibited higher soil available N and MBN during later growth stages and higher soil temperature and water content, soil water storage (SWS), soil organic C (SOC), and soil C/N ratio than NMF. In NMF and DRM, P fertilization increased grain yield, nodule weight, SOC, total N, soil C/N ratio, soil available N, and MBC but decreased MBN during early growth stages, and decreased soil water content and SWS. TRM exhibited the opposite trend. P fertilization increased soil total P and available P. Overall, NMF combined with P fertilization (~18.2 kg P ha−1) significantly improved faba bean yield. However, it may also accelerate SOC decomposition, highlighting the need to consider N fertilizer application in this alpine agricultural region.

Funder

the Science and Technology Project of Qinghai Province

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3