Response of Matching Degree between Precipitation and Maize Water Requirement to Climate Change in China

Author:

Xiang Yuanyuan123,Cheng Ruiyin12,Wang Mingyu12,Ding Yimin123

Affiliation:

1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

2. Key Laboratory of the Internet of Water and Digital Water Governance of the Yellow River, Ningxia University, Yinchuan 750021, China

3. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

The synchronicity of rain and heat in the summer of China’s monsoon region provides sufficient water and heat resources for maize growth. However, the intra-annual distribution of precipitation and the probability of extreme precipitation have been inevitably altered by the ongoing climate change, thus affecting the matching degree between precipitation and crop water requirements (MDPCWR). Evaluating the extent to which the MDPCWR will change in the future is of great importance for food security and the sustainable management of water resources. In this study, considering that different growth stages of crops have different sensitivities to water stress, the AquaCrop model was used to calculate the MDPCWR more accurately. In addition, a cumulative distribution function-transform (CDF-t) method was used to remove the bias of 11 global climate models (GCMs) under two typical emission scenarios (SSP2-4.5 and SSP5-8.5) from phase six of the Coupled Model Intercomparison Project (CMIP6). A comprehensive investigation was conducted on how maize growth, water consumption, and the MDPCWR will respond to future climate change with CO2 concentration enrichment in the Huang–Huai–Hai (3H) region in China by driving a well-tested AquaCrop model with the bias-corrected GCMs outputs. The results indicate the following: (1) The CDF-t method can effectively remove seasonal bias, and it also performs well in eliminating the bias of extreme climate events. (2) Under the SSP2-4.5 scenario, the average maximum temperature will increase by 1.31 °C and 2.44 °C in 2021–2050 and 2051–2080, respectively. The average annual precipitation will increase up to 96.8 mm/year, but it will mainly occur in the form of heavy rain. (3) The increased maize evapotranspiration rate does not compensate for the decreased crop water requirement (up to −32 mm/year), due to a shorter growth cycle. (4) The farmland cultivation layer is not able to hold a significant amount of precipitation, due to the increased frequency of heavy rains, resulting in increased irrigation water requirements for maize over the next two periods, with the maximum value of 12 mm/year. (5) Under different scenarios, the projected future MDPCWR will decrease by 9.3–11.6% due to changes in precipitation patterns and crop water requirements, indicating that it will be more difficult for precipitation to meet the water demand of maize growing in the 3H region. The results can provide comprehensive information to understand the impact of climate change on the agricultural water balance and improve the regional strategy for water resource utilization in the 3H region.

Funder

Ningxia Talent Introduction Project

Open Research Fund Program of State key Laboratory of Hydroscience and Engineering

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference77 articles.

1. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene;Yang;Proc. Natl. Acad. Sci. USA,2015

2. A Review of Recent Advances in Research on Asian Monsoon in China;He;Adv. Atmos. Sci.,2007

3. Distribution of hazard and risk caused by agricultural drought and flood and their correlations in summer monsoon–affected areas of China;Zhang;Theor. Appl. Climatol.,2022

4. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China;Chen;Agric. For. Meteorol.,2020

5. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3