Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India

Author:

Dhillon Buta Singh,Kumar VirenderORCID,Sagwal Pardeep,Kaur Navjyot,Singh Mangat Gurjit,Singh Sudhanshu

Abstract

Poor early growth and uneven crop establishment are reported as the major bottlenecks in wide-scale adoption and optimal yield realization of dry direct-seeded rice (DSR). Seed priming can potentially help overcome these problems in DSR. Therefore, laboratory and field studies were conducted at Punjab Agricultural University, Ludhiana, India, during kharif/wet-season 2018 and 2019 to evaluate the effect of different priming techniques on germination, establishment, growth, and grain yield of rice under DSR conditions. The following priming treatments were evaluated: dry non-primed seed (control), hydropriming with distilled water, halopriming with 2.0% potassium nitrate, hormopriming with 50 ppm gibberellic acid (GA3), and osmopriming with polyethylene glycol (PEG)(−0.6 MPa), each with 12 and 24 h priming duration. In 2019, priming treatments were tested under two DSR establishment methods—conventional DSR (sowing in dry soil followed by irrigation) and soil mulch DSR (locally known as vattar DSR) (sowing in moist soil after pre-sowing irrigation), whereas in 2018, priming treatments were evaluated under conventional DSR only. In both years, halopriming and hormopriming resulted in a 7–11% increase in rice yields compared to non-primed dry seed (control). Osmopriming resulted in a 4% yield increase compared to control in 2018 but not in 2019. The higher yields in halopriming and hormopriming were attributed to higher and rapid germination/crop emergence, better root growth, and improvement in yield attributes. Priming effect on crop emergence, growth, and yield did not differ by DSR establishment methods and duration of priming. Conventional DSR and soil mulch DSR did not differ in grain yield, whereas they differed in crop emergence, growth, and yield attributes. These results suggest that halopriming with 2.0% potassium nitrate and hormopriming with 50 ppm GA3 has good potential to improve crop establishment and yield of rice in both conventional and soil mulch DSR systems.

Funder

International Rice Research Institute, Direct seeded rice consortium

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3