Effect of Water Management under Different Soil Conditions on Cadmium and Arsenic Accumulation in Rice

Author:

Li Xia1,Zhou Ya1,Luo Lihui1,Wang Peng1,You Rui1

Affiliation:

1. Institute of Agricultural Quality Standards and Testing Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

Abstract

Water management and soil conditions affect the bioavailability of cadmium (Cd) and inorganic arsenic (As) in the soil, and hence, their accumulation in rice grains. A field experiment was conducted to investigate the effects of two water management regimes (flooding and dry–wet alternation) on Cd and inorganic As uptake and transport in rice under different soil conditions (paddy soil developed from gray-brown alluvium, K1; paddy soil developed from weathered shale and slate, K2) in the Sichuan Basin, Western China. The results indicated that compared to the wet–dry rotation, long-term flooding led to a substantial decrease of 49.3~55.8% in soil-available Cd content (p < 0.05), accompanied by a significant increase of 16.0~74.2% in As(Ⅲ) content (p < 0.05), causing no significant difference in As(V) content at the K1 site (p > 0.05). However, differences in soil-available Cd and inorganic As content under different water management treatments were both insignificant at the K2 site (p > 0.05). Long-term flooding treatment at the K1 site resulted in a remarkable reduction of 90.2% in Cd content in rice husks and 92.2% in brown rice (p < 0.05), along with a significant increase of 263.6% and 153.3%, respectively, in As(Ⅲ) content; no significant differences in As(V) content were observed at the K2 site (p > 0.05). In conclusion, the effect of water management on rice Cd and inorganic As varied under different soil conditions, with the change in rice Cd and inorganic As in paddy soil developed from gray-brown alluvium being significantly greater than that in paddy soil developed from weathered shale and slate.

Funder

Sichuan Provincial Science and Technology

Sichuan Provincial Finance Independent Innovation Special Project: Soil Pollutants and Food Security Risk Assessment

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3