Estimation of Fusarium Head Blight Severity Based on Transfer Learning

Author:

Gao ChunfengORCID,Gong Zheng,Ji Xingjie,Dang Mengjia,He Qiang,Sun Heguang,Guo WeiORCID

Abstract

The recognition accuracy of traditional image recognition methods is heavily dependent on the design of complicated and tedious hand-crafted features. In view of the problems of poor accuracy and complicated feature extraction, this study presents a methodology for the estimation of the severity of wheat Fusarium head blight (FHB) with a small sample dataset based on transfer learning technology and convolutional neural networks (CNNs). Firstly, we utilized the potent feature learning and feature expression capabilities of CNNs to realize the automatic learning of FHB characteristics. Using transfer learning technology, VGG16, ResNet50, and MobileNetV1 models were pre-trained on the ImageNet. The knowledge was transferred to the estimation of FHB severity, and the fully connected (FC) layer of the models was modified. Secondly, acquiring the wheat images at the peak of the outbreak of FHB as the research object, after preprocessing for size filling on the wheat images, the image dataset was expanded with operations such as mirror flip, rotation transformation, and superimposed noise to improve the performance of the model and reduce the overfitting of models. Finally, under the Tensorflow deep learning framework, the VGG16, ResNet50, and MobileNetV1 models were subjected to transfer learning. The results showed that in the case of transfer learning and data augmentation, the ResNet50 model in Accuracy, Precision, Recall, and F1 score was better than the other two models, giving the highest accuracy of 98.42% and F1 score of 97.86%. The ResNet50 model had the highest recognition accuracy, providing technical support and reference for the accurate recognition of FHB.

Funder

Education Department of Henan Province

National engineering research center for Argo-ecological big data analysis and application

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3