Modeling-Based Energy Performance Assessment and Validation of Air-To-Water Heat Pump System Integrated with Multi-Span Greenhouse on Cooling Mode

Author:

Rasheed Adnan,Kim Hyeon TaeORCID,Lee Hyun WooORCID

Abstract

The purpose of this study was to conduct a modeling-based energy performance assessment and validation of an air-to-water heat pump (AWHP) system, in the cooling mode, integrated with a multi-span greenhouse using TRNSYS software. We used the building energy simulation (BES) model to investigate the performance characteristics of the AWHP system for greenhouse cooling. We modelled the components of the AWHP system, including the fan coil unit (FCU), water storage tank, and water circulation pump integrated with the greenhouse model. The proposed model included all the components of the experimental system. We validated the proposed model by comparing the simulation results with those obtained from field experiments. We investigated the cooling energy supply to the multi-span greenhouse, greenhouse internal air temperature, heat pump (HP) output temperature, and coefficient of performance (COP). We evaluated the performance of our model by calculating the Nash–Sutcliffe efficiency (NSE) coefficient of all the validated components. Furthermore, we performed linear regression analyses (R2) to determine the relationship between the different parameters. NSE values of 0.87, 0.81, and 0.93, for the greenhouse internal air temperature, the energy supply to the greenhouse, and the HP output water temperature, respectively, validated the prediction accuracy of the model. Moreover, R2 values of 0.83 and 0.39 indicated that cooling loads are more dependent on ambient solar radiation than ambient air temperature. Furthermore, an R2 value of 0.91 showed a linear relationship between the HP’s energy consumption and ambient air temperature. The average daily COP of the HP system was 2.9. Overall, the simulation results showed acceptable correlation with the experimental results. The high NSE values validated the high predictive power of the model. The proposed validation model can be used to improve the performance of systems by optimizing the control strategies and capacities of the equipment (e.g., the HP, the FCU, and the area of the greenhouse). We have provided detailed information to enable engineers, researchers, and consultants to implement the model for their specific needs.

Funder

This research was supported by the Basic Science Research Program through the National Re-search Foundation of Korea (NRF), funded by the Ministry of Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3