Rapeseed Morpho-Physio-Biochemical Responses to Drought Stress Induced by PEG-6000

Author:

Batool Maria,El-Badri Ali Mahmoud,Wang Zongkai,Mohamed Ibrahim A. A.ORCID,Yang Haiyun,Ai Xueying,Salah AkramORCID,Hassan Muhammad Umair,Sami RokayyaORCID,Kuai Jie,Wang BoORCID,Zhou Guangsheng

Abstract

Rapeseed is a valuable oil crop due to its high nutritious value and ample oil content. The current study provides a comparative analysis of 24 cultivars to better understand the performance and predict the adaptative mechanisms of drought-tolerant and drought-sensitive cultivars based on germination and morphophysiological traits during the early seedling stage using PEG-6000 simulated drought conditions. JYZ 158 and FY 520 (tolerant cultivars) and YG 2009 and NZ 1838 (sensitive cultivars) were selected to further explore the role of osmolytes and enzymatic activity in improving drought tolerance. This investigation illustrated that drought stress negatively influenced all studied cultivars; however, the degree of influence was different for each cultivar, suggesting their different potential for drought tolerance. Moreover, enzymatic and osmoregulatory mechanisms were highly efficient in tolerant cultivars compared to sensitive cultivars. Additionally, tolerant cultivars showed higher chlorophyll and lower malondialdehyde (MDA) contents versus sensitive cultivars under drought stress conditions. Higher drought tolerance coincided with higher enzymatic activity and osmolyte content. This work showed that JYZ 158 and FY 520 cultivars had higher drought tolerance, and might be a significant germplasm resource for breeding programs developing drought-tolerant rapeseed.

Funder

National Key Research and Development Program of China

Technical Innovation Project in Hubei Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3