Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis

Author:

Gallegos-Cedillo Victor M.ORCID,Diánez FernandoORCID,Nájera Cinthia,Santos MilaORCID

Abstract

Plant quality and survival prediction tools are useful when applied in the field in different agricultural sectors. The objectives of this study were to conduct a review and bibliometric analysis of the Dickson Quality Index (DQI) as a key plant quality indicator and with respect to its scientific applications. A third objective was to identify the main morphological and physiological parameters used in plant production research. The methodology and findings of 289 scientific articles were analysed based on the morphological, physiological, and mathematical parameters used as plant quality indicators in research on forest, medicinal, horticultural, aromatic, and ornamental species. During the last 10 years, the number of publications that have used the DQI as a plant quality parameter has increased by 150%, and Brazilian researchers stand out as the most frequent users. Forestry is the discipline where quality parameters and their biometric relationships are most often used to facilitate intensive plant production. Use of the DQI increases the certainty of prediction, selection, and productivity in the plant production chain. The DQI is a robust tool with scientific application and great potential for use in the preselection of plants with high quality standards among a wide range of plant species.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference329 articles.

1. FAOSTAT Database http://www.fao.org/faostat/es/#data/RL/visualize

2. Testing nursery plant quality of Canary Island pine seedlings grown under different cultivation methods;Luis;Phyton,2004

3. Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs

4. Vegetable Grafting: Principles and Practices;Colla,2017

5. Optimal LED Wavelength Composition for the Production of High-Quality Watermelon and Interspecific Squash Seedlings Used for Grafting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3