Methylome and Epialleles in Rice Epilines Selected for Energy Use Efficiency

Author:

Schmidt Martin,Byzova Marina,Martens Cindy,Peeters Marrit,Raj Yog,Shukla Shailesh,Verwulgen Tom,DeBlock Marc,Van Lijsebettens MiekeORCID

Abstract

Epigenetics offers important opportunities in breeding to improve the potential yield in a wide variety of crops. Starting from a pure breeder seed lot of a rice (Oryza sativa ssp. indica) inbred population, repeated testing for improved cellular respiration rates and energy use efficiency (EUE) over three generations identified performant epilines with distinct epigenetic signatures and with improved seed yield in field trials. Epiline DNA methylomes were characterized by genome-wide bisulfite sequencing to discern cytosine methylation changes in relation to transcriptome and phenotype. Regional methylation changes were dispersed over the epiline genomes. A number of upstream-associated differentially methylated regions (DMRs) correlated with differentially expressed genes (DEGs) with a role in particular molecular functions like transmembrane transport and protein kinase activity. Targeted bisulfite sequencing confirmed epiline DMRs that anti-correlated with DEGs, identifying putative epialleles that were susceptible for cytosine methylation changes that might affect gene expression and contribute to the phenotype. Chromatin immunoprecipitation sequencing revealed the extensive enrichment of gene-associated histone H3 lysine-4 trimethylation (H3K4me3), which correlated with gene activation and reduced cytosine methylation. Our data indicate that seed formation is prone to epigenetic changes that might be used as a resource in crop improvement.

Funder

Agentschap voor Innovatie door Wetenschap en Technologie

Seventh Framework Programme

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3