Efficacy of Various Mechanical Weeding Methods—Single and in Combination—In Terms of Different Field Conditions and Weed Densities

Author:

Naruhn Georg-PeterORCID,Peteinatos Gerassimos G.ORCID,Butz Andreas F.,Möller KurtORCID,Gerhards Roland

Abstract

Public awareness and environmental policies have increased interest in applying non-herbicide weed control methods in conventional farming systems. Even though mechanical weed control has been used for centuries in agricultural practice, continuous developments—both in terms of implements and automation technologies—are continuously improving the potential outcomes. Current mechanical weed control methods were evaluated for their weed control efficacy and effects on yield potential against their equivalent herbicide methods. Furthermore, not much is known about the correlation between weed control efficacy (WCE) of different mechanical methods at varying weed density levels. A total of six experiments in winter wheat (2), peas (2), and soybean (2) were carried out in the years 2018, 2019, and 2020 in southwestern Germany. Harrowing and hoeing treatments at different speeds were carried out and compared to the herbicide treatments and untreated control plots. Regarding the average WCE, the combination of harrowing and hoeing was both the strongest (82%) and the most stable (74–100%) mechanical treatment in the different weed density levels. Whereas, in average, hoeing (72%) and harrowing (71%) were on the same WCE level, but harrowing (49–82%) was more stable than hoeing (40–99%). The grain yields in winter wheat varied between 4.1 Mg∙ha−1 (control) and 6.3 Mg∙ha−1 (harrow), in pea between 2.8 Mg∙ha−1 (hoe slow) and 5.7 Mg∙ha−1 (hoe fast) and in soybean between 1.7 Mg∙ha−1 (control) and 4 Mg∙ha−1 (herbicide). However, there were no significant differences in most cases. The results have shown that it is not possible to pinpoint a specific type of treatment as the most appropriate method for this cultivation, across all of the different circumstances. Different field and weather conditions can heavily affect and impact the expected outcome, giving, each time, an advantage for a specific type of treatment.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference39 articles.

1. Biologie und Ökologie der Unkräuter. Biologie und Bekämpfung der Unkräuter;Gerhards,2017

2. Unkrautflora in Mais

3. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices

4. Crop losses to pests

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3