Nano-Hydroxyapatite and ZnO-NPs Mitigate Pb Stress in Maize

Author:

Alhammad Bushra Ahmed1,Ahmad Awais2,Seleiman Mahmoud F.23ORCID

Affiliation:

1. Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh 11942, Saudi Arabia

2. Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt

Abstract

Heavy metals (HMs) stress, particularly lead (Pb) stress, is one of the most hazardous environmental stresses that can negatively affect plants’ growth, yield, and quality. Therefore, the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg L−1), nano-hydroxyapatite (HP-NPs; 50 mg kg−1), and their combination on growth, physiological, and yield traits of maize grown in soil contaminated with Pb (i.e., 100 mg kg−1) were investigated. The results showed that Pb stress significantly reduced plant leaf area by 50.9% at 40 days after sowing (DAS), 55.5% at 70 DAS, and 54.2% at 100 DAS in comparison to the unstressed plants (control). However, the combined application of ZnO-NPs (50 mg L−1) + HP-NPs (50 mg kg−1) reduced the adverse effects of Pb on plant growth in terms of increasing leaf area by 117.6% in plants grown in Pb-contaminated soil (100 mg kg−1). Similarly, the combined application of ZnO-NPs + HP-NPs resulted in increments in the total chlorophyll content by 47.1%, photosynthesis rate by 255.1%, and stomatal conductance by 380% in comparison to that obtained from maize stressed with Pb. On the other hand, antioxidants such as sodium dismutase (SOD; 87.1%), peroxidase (POX; 90.8%), and catalase (CAT; 146%), and proline content (116%) were significantly increased as a result of Pb stress compared to unstressed plants. Moreover, N, P, K, and Zn contents in the whole plant grown under Pb stress were decreased by 38.7%, 69.9%, 46.8%, and 82.1%, respectively, compared to those obtained from the control. Whereas the combined treatment of ZnO-NPs (50 mg L−1) + HP-NPs (50 mg kg−1) resulted in increased uptake of plant nutrients and, consequently, the highest values of ear weight, grain yield, and harvest index were obtained. Furthermore, the combined application of HP-NPs + ZnO-NPs in contaminated soil reduced Pb uptake in plant biomass by 77.6% and grains by 90.21% in plants exposed to Pb stress. In conclusion, the combined application of ZnO-NPs and HP-NPs significantly improved growth, physiological traits, antioxidants, and yield as well as elemental uptake of maize grown under Pb stress.

Funder

Deputyship for Research & Innovation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3