Abstract
The physicochemical and microbial properties of soil under long-term monoculture of winter wheat were studied to assess the effects of two tillage systems of different intensities: reduced (RT) and conventional (CT). The research was carried out on an 18-year-old experimental field at Grabów (eastern Poland) between 2018 and 2020. The RT (ploughless) and the CT (mouldboard ploughing) systems with machine operating depths of up to 10 and 25 cm, respectively, were used. The analysed parameters were as follows: soil texture, pH, readily dispersible clay content (RDC), soil organic matter (SOM), carbon from particulate organic matter (POM-C), hot- and cold-water-extractable organic carbon (HWEC, CWEC) and nitrogen (HWEN, CWEN), soil basal respiration (SBR), microbial biomass carbon (MBC) and nitrogen (MBN), nitrification potential (NP), dehydrogenases (DEH), and acid (ACP) and alkaline (ALP) phosphatases activities. Several single soil quality indices, including: metabolic (qCO2) and microbial (MicQ) quotients, enzymatic pH level indicator (EpHI), stratification ratio (SR), and metabolic potential index (MP) were calculated. The use of RT resulted in increased SOM and, therefore, in decreased RDC and increased values of soil stability, POM-C, HWEC, CWEC, HWEN, CWEN, MBC, and MBN in relation to CT. The MicQ, EpHI, SR, and MP well reflected the effects of RT and CT systems on soil and appeared to be useful in soil quality assessment. The results showed the beneficial effects on soil of the less intensive RT system in comparison with CT. Statistical analysis showed the significance of differences between tillage systems and interrelationships between the studied soil quality parameters.
Subject
Agronomy and Crop Science