Soil Salinity Assessing and Mapping Using Several Statistical and Distribution Techniques in Arid and Semi-Arid Ecosystems, Egypt

Author:

Fadl Mohamed E.1ORCID,Jalhoum Mohamed E. M.2,AbdelRahman Mohamed A. E.3ORCID,Ali Elsherbiny A.4ORCID,Zahra Wessam R.5ORCID,Abuzaid Ahmed S.5ORCID,Fiorentino Costanza6,D’Antonio Paola6ORCID,Belal Abdelaziz A.2ORCID,Scopa Antonio6ORCID

Affiliation:

1. Division of Scientific Training and Continuous Studies, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt

2. Division of Agricultural Applications, Soil and Marine Sciences, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt

3. Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt

4. Geography Department, Faculty of Arts, Zagazig University, Zagazig 44519, Egypt

5. Soils and Water Department, Faculty of Agriculture, Benha University, Benha 13518, Egypt

6. Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Via dell’Ateneo Lucano, 10-85100 Potenza, Italy

Abstract

Oasis lands in Egypt are commonly described as salty soils; therefore, waterlogging and higher soil salinity are major obstacles to sustainable agricultural development. This study aims to map and assess soil salinization at El-Farafra Oasis in the Egypt Western Desert based on salinity indices, Imaging Spectroscopy (IS), and statistical techniques. The regression model was developed to test the relationship between the electrical conductivity (ECe) of 70 surface soil samples and seven salinity indices (SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI 9) to produce soil salinity maps depending on Landsat-8 (OLI) images. The investigations of soil salinization and salinity indices were validated in a studied area based on 30 soil samples; the obtained results represented that all salinity indices have shown satisfactory correlations between ECe values for each soil sample site and salinity indices, except for the SI 5 index that present non-significant correlations with R2 value of 0.2688. The SI 8 index shows a higher negative significant correlation with ECe and an R2 value of 0.6356. There is a significant positive correlation at the (p < 0.01) level between SI 9 and ECe (r = 0.514), a non-significant correlation at the (p < 0.05) level between soil ECe and SI 1 index (r = 0.495), and the best-verified salinity index was for SI 7 that has a low estimated RMSE error of 8.58. Finally, the highest standard error (R2) was represented as ECe (dS m−1) with an R2 of 0.881, and the lowest one was SI 9 with an R2 of 0.428, according to Tukey’s test analysis. Therefore, observing and investigating soil salinity are essential requirements for appropriate natural resource management plans in the future.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3