Overexpression of OsPHT1;4 Increases Phosphorus Utilization Efficiency and Improves the Agronomic Traits of Rice cv. Wuyunjing 7

Author:

Hu Zhi,Huang Xu,Wang Xiaowen,Xia Huihuang,Liu Xiuli,Sun Yafei,Sun Shubin,Hu YibingORCID,Cao Yue

Abstract

Inorganic phosphate (Pi) is taken up by plant roots and translocated via phosphate transporters. Previously, we showed that phosphate transporter OsPHT1;4 in the PHT1 family participates in phosphate acquisition and mobilization; it facilitates the embryo development of Japonica rice Nipponbare. This study investigated the potential of manipulating the expression of OsPHT1;4 to increase Pi acquisition efficiency and crop productivity in rice cv. Wuyunjing 7 (WYJ 7), a cultivar widely grown in Yangtze River Delta of China. The OsPHT1;4 overexpression lines and wild-type WYJ 7 were treated under different Pi conditions in hydroponic and field experiments. Quantitative real-time RT-PCR analysis and the transgenic plants expressing GUS reporter gene indicate strong expression of OsPHT1;4 in roots and leaf collars of cv. WYJ 7. The total P contents in shoots of the OsPHT1;4-overexpressing plants were significantly higher under Pi-deficient hydroponic conditions than the wild type under Pi sufficiency and deficiency. 33Pi uptake and translocation assays confirmed the results. In the field condition, OsPHT1;4 overexpression lines had a higher P concentration in tissues than the wild type control, and the panicle performance of the overexpression lines including the grain yield was improved as well. Taken together, our results show that OsPHT1;4 plays an important role in the acquisition and mobilization of Pi in WYJ 7, especially under Pi deficiency. The study highlights the importance of OsPHT1;4 in improving the agronomic traits of the widely grown rice cultivar in China.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3