Agricultural Nitrogen Budget for a Long-Term Row Crop Production System in the Midwest USA

Author:

Dattamudi SankuORCID,Kalita Prasanta K.,Chanda Saoli,Alquwaizany A.S.ORCID,S.Sidhu B.

Abstract

In the Midwestern United States, subsurface drainage (commonly known as tile drains) systems have been extensively used for sustaining agricultural production. However, the tile drains have raised concerns of facilitating the transport of agricultural chemicals from the fields to receiving waters. Data from a long-term field experiment in the Little Vermilion River (LVR) watershed of east-central Illinois, USA, shows that the tile drain systems have contributed to increased nitrate N (NO3-N) to the receiving water body, Georgetown Lake Reservoir, over time. We conducted more than 10 years of research on fate and transport of NO3-N in tile drain water, surface runoff and soil N. Corn (Zea mays L.) and soybean (Glycine max L.) were planted in rotation for this watershed. We evaluated N balance (inputs and outputs) and transfer (runoff and leaching) components from three sites with both surface and subsurface flow stations within this watershed, and N budgets for individual sites were developed. Nitrogen fertilizer application (average 192 kg ha−1 y−1) and soil N mineralization (average 88 kg ha−1 y−1) were the major N inputs for corn and soybean, respectively in this watershed. Plant N uptake was the major N output for both crops during this entire study period. Annual N uptake for the LVR watershed ranged from +39 to +148 (average +93) kg ha−1 and −63 to +5 (average −32) kg ha−1, respectively, for corn and soybeans. This data indicates that most of the soil mineralized N was used during soybean production years, while corn production years added extra N in the soil. Surface runoff from the watershed was negligible, however, subsurface leaching through tile drains removed about 18% of the total rainfall. Average NO3-N concentrations of leaching water at sites A (15 mg L−1) and B (16.5 mg L−1) exceeded maximum contaminant level (MCL; 10 mg L−1) throughout the experiment. However, NO3-N concentrations from site E (6.9 mg L−1) never exceeded MCL possibly because 15–22% lower N was received at this site. We estimated that the average corn grain yield would need to be 28% higher to remove the additional N from this watershed. Our study suggests that N application schemes of the LVR watershed need to be reevaluated for better N management, optimum crop production, and overall environmental sustainability.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3