Three-Dimensional Wheat Modelling Based on Leaf Morphological Features and Mesh Deformation

Author:

Zheng ChenxiORCID,Wen Weiliang,Lu Xianju,Chang Wushuai,Chen Bo,Wu Qiang,Xiang Zhiwei,Guo Xinyu,Zhao Chunjiang

Abstract

The three-dimensional (3D) morphological structure of wheat directly reflects the interrelationship among genetics, environments, and cropping systems. However, the morphological complexity of wheat limits its rapid and accurate 3D modelling. We have developed a 3D wheat modelling method that is based on the progression from skeletons to mesh models. Firstly, we identified five morphological parameters that describe the 3D leaf features of wheat from amounts of 3D leaf digitizing data at the grain filling stage. The template samples were selected based on the similarity between the input leaf skeleton and leaf templates in the constructed wheat leaf database. The leaf modelling was then performed using the as-rigid-as-possible (ARAP) mesh deformation method. We found that 3D wheat modelling at the individual leaf level, leaf group, and individual plant scales can be achieved. Compared with directly acquiring 3D digitizing data for 3D modelling, it saves 79.9% of the time. The minimum correlation R2 of the extracted morphological leaf parameters between using the measured data and 3D model by this method was 0.91 and the maximum RMSE was 0.03, implying that this method preserves the morphological leaf features. The proposed method provides a strong foundation for further morphological phenotype extraction, functional–structural analysis, and virtual reality applications in wheat plants. Overall, we provide a new 3D modelling method for complex plants.

Funder

Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3