Identification of Field Tolerance and Resistance to Mal Secco Disease in a Citrus Germplasm Collection in Sicily

Author:

Russo RiccardoORCID,Caruso MarcoORCID,Arlotta Carmen,Lo Piero Angela Roberta,Nicolosi ElisabettaORCID,Di Silvestro SilviaORCID

Abstract

Mal secco is a tracheomycotic disease caused by the fungus Plenodomus tracheiphilus (Petri) Gruyter, Aveskamp, and Verkley that has caused severe damage and loss of yield in the citrus industry in the Mediterranean area, for 100 years. While the disease can affect different cultivated citrus species, lemon (C. × limon var. limon (L.) Burm. f.) and citron are the most susceptible. The identification of resistant or field-tolerant clones and hybrids is a major goal for lemon growers and breeders. To identify sources of resistance or tolerance to the disease, we performed a phenotypic survey on a lemon and lemon-like open-field germplasm planted at CREA (Research Centre for Olive, Fruit and Citrus Crops), Italy, in an area with high pathogen pressure. Phenotyping was performed visually, four times, for three consecutive years, on a total of 50 accessions, with two or three replicate trees per accession. Moreover, molecular screening based on real-time PCR was performed, for two consecutive years, on twigs, young leaves, and mature leaves of all plants, to detect the pathogen in the absence of clear symptoms. The accessions were categorized into seven groups based on the presence of visual symptoms, real-time PCR pathogen detection, and canopy volume. The results revealed sources of tolerance in lemon and citron hybrids. The molecular screening identified P. tracheiphilus in all lemon clones, with mean Ct values ranging from 17 to 39. The screening also identified P. tracheiphilus in clones without clear symptoms, indicating their ability to tolerate the disease. Moreover, a strong negative correlation was found between the Ct values in twigs and symptom severity (r = −0.72). This indicates that the DNA from twigs is the most appropriate for use in performing reliable phenotyping of mal secco susceptibility in adult plants. An autotetraploid lemon (Doppio Lentini) seems to be immune to the disease, under natural pressure, since P. tracheiphilus was not detected by real-time PCR and visual screening. Overall, the data obtained are a valuable resource for identifying both the most tolerant lemon varieties suitable for areas with high pathogen pressure and the best breeding parents for the introgression of resistance genes into lemon genotypes.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3