RTM Inversion through Predictive Equations for Multi-Crop LAI Retrieval Using Sentinel-2 Images

Author:

Croci MicheleORCID,Impollonia GiorgioORCID,Marcone Andrea,Antonucci Giulia,Letterio Tommaso,Colauzzi Michele,Vignudelli Marco,Ventura Francesca,Anconelli Stefano,Amaducci Stefano

Abstract

Near-real-time, high-spatial-resolution leaf area index (LAI) maps would enable producers to monitor crop health and growth status, improving agricultural practices such as fertiliser and water management. LAI retrieval methods are numerous and can be divided into statistical and physically based methods. While statistical methods are generally subject to high site-specificity but possess high ease of implementation and use, physically based methods are more transferable, albeit more complex to use in operational settings. In addition, statistical methods need a large amount of data for calibration and subsequent validation, and this is only seldom feasible. Techniques based on predictive equations (PEphysical) represent a viable alternative, allowing the partial combination of statistical and physical methods merits while minimising their shortcomings. In this paper, predictive equation-based techniques were compared with four other methods: two radiative transfer model (RTM) inversion methods, one based on neural network (NNET) and one based on a look-up table (LUT), and two empirical methods (one using empirical models based on vegetation indices and in situ data and one based on empirical models found in the scientific literature). The methods were chosen based on common use. To evaluate the performance of the studied methods, the coefficient of determination (R2), root mean square error (RMSE), and normalised root mean square error (nRMSE, %) between the estimates and in situ LAI measurements were reported. The best PEphysical results, achieved by the OSAVI index (RMSE = 0.84 m2 m−2), provided better performance for LAI recovery than the NNET-based RTM inversions (0.86 m2 m−2) or the estimates made by LUT (0.94 m2 m−2). Furthermore, the best PEphysical produced accuracies comparable to the best empirical model (RMSE = 0.71 m2 m−2), calibrated through in situ data, and similar to the best literature model (RMSE = 0.76 m2 m−2). These results indicated that PEphysical can be used to recover LAI with transferability comparable to literature models.

Funder

Project “Protocolli Operativi Scalabili per l’agricoltura di precisione-POSITIVE”-CUP

Emilia-Romagna Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3