Modelling Winter Rapeseed (Brassica napus L.) Growth and Yield under Different Sowing Dates and Densities Using AquaCrop Model

Author:

Xie Ziang1,Kong Jiying1,Tang Min1,Luo Zhenhai1,Li Duo1,Liu Rui1,Feng Shaoyuan1,Zhang Chao1ORCID

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

The sowing date and density are considered to be the main factors affecting crop yield. The determination of the sowing date and sowing density, however, is fraught with uncertainty due to the influence of climatic conditions, topography, variety and other factors. Therefore, it is necessary to find a comprehensive consideration of these factors to guide the production of winter rapeseed. A reliable crop model could be a crucial tool to investigate the response of rapeseed growth to changes in the sowing date and density. At present, few studies related to rapeseed model simulation have been reported, especially in the comprehensive evaluation of the effects of sowing date and density factors on rapeseed development and production. This study aimed to evaluate the performance of the AquaCrop model for winter rapeseed development and yield simulation under various sowing dates and densities, and to optimize the sowing date and density for agricultural high-efficient production in the Jianghuai Plain. Two years of experiments were carried out in the rapeseed growing season in 2020 and 2021. The model parameters were fully calibrated and the simulation performances in different treatments of sowing dates and densities were evaluated. The results indicated that the capability of the AquaCrop model to interpret crop development for different sowing dates was superior to that of sowing densities. For rapeseed canopy development, the RMSE for three sowing dates and densities scenarios were 7–22% and 16–23%, respectively. The simulated biomass and grain yield for different sowing dates treatments (RMSE: 0.8–2.1 t·ha−1, Pe: 0–35.3%) were generally better than those of different densities treatments (RMSE: 0.7–3.9 t·ha−1, Pe: 8.2–90%). Compared with other sowing densities, higher overestimation errors of the biomass and yield were observed for the low-density treatment. Adequate agreement for crop evapotranspiration simulation was achieved, with an R2 of 0.79 and RMSE of 26 mm. Combining the simulation results and field data, the optimal sowing scheme for achieving a steadily high yield in the Jianghuai Plain of east China was determined to be sowing in October and a sowing density of 25.0–37.5 plant·m−2. The study demonstrates the great potential of the AquaCrop model to optimize rapeseed sowing patterns and provides a technical means guidance for the formulation of local winter rapeseed production.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference58 articles.

1. Analysis and strategy for oil crop industry in China;Wang;Chin. J. Oil Crop Sci.,2014

2. National Bureau of Statistics of China (2022, June 01). China Statistical Yearbook, Available online: www.stats.gov.cn.

3. Adaptative adjustments of the sowing date of late season rice under climate change in Guangdong Province;Wang;ACTA Ecol. Sin.,2011

4. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars;Ozer;Eur. J. Agron.,2003

5. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape;Weymann;Field Crops Res.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3