Abstract
Excessive nitrogenous fertilization in years resulted in larger nitrogen and profit losses. This problem can be reduced by using need-based and time-specific nitrogen management. Therefore, a field experiment was carried out during the Kharif season of 2019 and 2020 in order to evaluate the impact of precision nitrogen management on the phenology, yield and agrometeorological indices of hybrid maize genotypes at the Agronomy Research Farm, FoA Wadura, Sopore, SKUAST-Kashmir. The experiment was carried out in split-plot design consisting of maize hybrids (Shalimar Maize Hybrid-2 Vivek-45 and Kanchan-517) as main plot treatments and precision nitrogen management (T1: Control, T2: Recommended N, T3: 25% N as basal ≤ LCC 3@20 kg N ha−1, T4: 25% N as basal ≤ LCC 3@30 kg N ha−1, T5: 25% N as basal ≤ LCC 4@20 kg N ha−1, T6: 25% N as basal ≤ LCC 4@30 kg N ha−1, T7: 25% N as basal ≤ LCC 5@20 kg N ha−1 and T8: 25% N as basal ≤ LCC 5@30 kg N ha−1) as sub-plot treatments. Results demonstrated that maize hybrids showed a non-significant difference in attaining different phenophases during both years. However, Shalimar Maize Hybrid-2 demonstrated higher grain (62.35 and 60.65 q ha−1) and biological yield (170.26 and 165.86 q ha−1), a higher number of days to attain different phenological stages in comparison to Vivek-45 and Kanchan-517 thereby achieved higher heat units, PTUs, HTUs, PTI. The application of nitrogen through LCC ≤ 5@30 kg N ha−1 noted higher grain yield (61.27 and 59.13 q ha−1) and biological yield (171.30 and 166.13 q ha−1) during 2019 and 2020 respectively. Higher values of Growing degree days (GDD), Heliothermal units (HTU), Photothermal units (PTU), Phenothermal index (PTI), heat use efficiency (HUE) and radiation use efficiency (RUE) were observed in the application of nitrogen through LCC ≤ 5@30 kg N ha−1 and required the highest number of days to reach different phenophases than other treatments during crop growing seasons of 2019 and 2020. The results demonstrated that Nitrogen application based on LCC ≤ 5@30 proved effective and should be adopted in maize hybrids especially in Shalimar Maize Hybrid-2 to attain higher yield under the temperate climate of Kashmir Valley.
Funder
King Saud University, Riyadh, Saudi Arabia
Subject
Agronomy and Crop Science
Reference48 articles.
1. Climatic variation and the growth of crops;Monteith;Quart. J. Royal Met. Soc.,1981
2. Staeblar, M.A. (2001). Physiological Responses to Cold Stress in Maize (Zea mays L.) During Early Phase of Development. [Master’s Thesis, University of Guelph].
3. Response of maize to various nitrogen sources and tillage practices;Ali;Sarhad J. Agr.,2012
4. Nitrogen Management for Maize using Image Processing;Kumar;Intern. J. Sci. Res.,2013
5. Adapt-N Uses Models and Weather Data to Improve Nitrogen Management for Corn;Harold;Better Cr.,2013
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献