A Phenotypic Extraction and Deep Learning-Based Method for Grading the Seedling Quality of Maize in a Cold Region

Author:

Zhang Yifei12,Lu Yuxin1,Guan Haiou23,Yang Jiao3,Zhang Chunyu12,Yu Song12ORCID,Li Yingchao1,Guo Wei12,Yu Lihe12

Affiliation:

1. College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China

2. Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China

3. College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China

Abstract

Background: Low-temperature stress significantly restricts maize germination, seedling growth and development, and yield formation. However, traditional methods of evaluating maize seedling quality are inefficient. This study established a method of grading maize seedling quality based on phenotypic extraction and deep learning. Methods: A pot experiment was conducted using different low-temperature combinations and treatment durations at six different stages between the sowing and seedling phases. Changes in 27 seedling quality indices, including plant morphology and photosynthetic performance, were investigated 35 d after sowing and seedling quality grades were classified based on maize yield at maturity. The 27 quality indices were extracted, and a total of 3623 sample datasets were obtained and grouped into training and test sets in a 3:1 ratio. A convolutional neural network-based grading method was constructed using a deep learning model. Results: The model achieved an average precision of 98.575%, with a recall and F1-Score of 98.7% and 98.625%, respectively. Compared with the traditional partial least squares and back propagation neural network, the model improved recognition accuracy by 8.1% and 4.19%, respectively. Conclusions: This study provided an accurate grading of maize seedling quality as a reference basis for the standardized production management of maize in cold regions.

Funder

National Key Research and Development Program of China

Postdoctoral Science Foundation Funded General Project of Heilongjiang Province

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Graduate Innovation Research Project of Heilongjiang Bayi Agricultural University

College Student Innovation and Entrepreneurship Training Program of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3