The Physiological Adjustments of Two Xerophytic Shrubs to Long-Term Summer Drought

Author:

Xu Mingze12ORCID,Zha Tianshan12,Tian Yun12,Liu Peng12,Bourque Charles P.-A.13,Jia Xin12,Li Cheng4,Jin Chuan12ORCID,Guo Zifan12,Wei Xiaoshuai12

Affiliation:

1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

3. Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada

4. Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

Abstract

Adaptive characteristics of plants, such as those associated with photosynthesis and resource use efficiency, are usually affected by synthesis costs and resource availability. The impact of extreme climate events such as long-term drought on plant physiological functions needs to be examined, particularly as it concerns the internal management of water and nitrogen (N) resources. In this study, we evaluated the resource management strategies for water and N by xerophytic shrubs, Artemisia ordosica and Salix psammophila, under extreme summer drought. This was carried out by comparing the plants’ physiological status during periods of wet and dry summer conditions in 2019 and 2021. Compared with the wet period, A. ordosica and S. psammophila both decreased their light-saturated net carbon (C) assimilation rate (Asat), stomatal conductance (gs), transpiration rate (E), leaf N content per leaf area (Narea), and photosynthetic N use efficiency (PNUE) during the summer drought. Whether in wet or dry summers, the gas-exchange parameters and PNUE of A. ordosica were generally greater than those associated with S. psammophila. The instantaneous water use efficiency (IWUE) response to drought varied with species. As a drought-tolerant species, the A. ordosica shrubs increased their IWUE during drought, whereas the S. psammophila shrubs (less drought-tolerant) decreased theirs. The divergent responses to drought by the two species were largely related to differences in the sensitivity of gs, and as a result, E. Compared with A. ordosica, S. psammophila’s inferior plasticity regarding gs response affected its ability to conserve water during drought. Our research illustrates the need for assessing plasticity in gs when addressing plant adaptation to long-term drought. A high dry-season IWUE in xerophytic shrubs can benefit the plants by augmenting their C gain.

Funder

Fundamental Research Funds for the National Natural Science Foundation of China

U.S.–China Carbon Consortium

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3