High-Throughput Plant Phenotyping (HTPP) in Resource-Constrained Research Programs: A Working Example in Ghana

Author:

Kassim Yussif BabaORCID,Oteng-Frimpong RichardORCID,Puozaa Doris KanvenaaORCID,Sie Emmanuel Kofi,Abdul Rasheed Masawudu,Abdul Rashid Issah,Danquah AgyemangORCID,Akogo Darlington A.ORCID,Rhoads James,Hoisington DavidORCID,Burow Mark D.ORCID,Balota Maria

Abstract

In this paper, we present a procedure for implementing field-based high-throughput plant phenotyping (HTPP) that can be used in resource-constrained research programs. The procedure relies on opensource tools with the only expensive item being one-off purchase of a drone. It includes acquiring images of the field of interest, stitching the images to get the entire field in one image, calculating and extracting the vegetation indices of the individual plots, and analyzing the extracted indices according to the experimental design. Two populations of groundnut genotypes with different maturities were evaluated for their reaction to early and late leaf spot (ELS, LLS) diseases under field conditions in 2020 and 2021. Each population was made up of 12 genotypes in 2020 and 18 genotypes in 2021. Evaluation of the genotypes was done in four locations in each year. We observed a strong correlation between the vegetation indices and the area under the disease progress curve (AUDPC) for ELS and LLS. However, the strength and direction of the correlation depended upon the time of disease onset, level of tolerance among the genotypes and the physiological traits the vegetation indices were associated with. In 2020, when the disease was observed to have set in late in medium duration population, at the beginning of the seed stage (R5), normalized green-red difference index (NGRDI) and variable atmospheric resistance index (VARI) derived at the beginning pod stage (R3) had a positive relationship with the AUDPC for ELS, and LLS. On the other hand, NGRDI and VARI derived from images taken at R5, and physiological maturity (R7) had negative relationships with AUDPC for ELS, and LLS. In 2021, when the disease was observed to have set in early (at R3) also in medium duration population, a negative relationship was observed between NGRDI and VARI and AUDPC for ELS and LLS, respectively. We found consistently negative relationships of NGRDI and VARI with AUDPC for ELS and LLS, respectively, within the short duration population in both years. Canopy cover (CaC), green area (GA), and greener area (GGA) only showed negative relationships with AUDPC for ELS and LLS when the disease caused yellowing and defoliation. The rankings of some genotypes changed for NGRDI, VARI, CaC, GA, GGA, and crop senescence index (CSI) when lesions caused by the infections of ELS and LLS became severe, although that did not affect groupings of genotypes when analyzed with principal component analysis. Notwithstanding, genotypes that consistently performed well across various reproductive stages with respect to the vegetation indices constituted the top performers when ELS, LLS, haulm, and pod yields were jointly considered.

Funder

BMGF

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference53 articles.

1. Addis Ababa: Organization of African Unity (1982). Lagos Plan of Action for the Economic Development of Africa, 1980–2000.

2. International Collaboration in Scientific Publishing: The Case of West Africa (2001–2010);Scientometrics,2013

3. Adaptation of Grain Legumes to Climate Change: A Review;Agron. Sustain. Dev.,2012

4. Conceptual Framework for Drought Phenotyping during Molecular Breeding;Trends Plant Sci.,2009

5. Future Scenarios for Plant Phenotyping;Annu. Rev. Plant Biol.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3