Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau

Author:

Cao ZuonanORCID,Kühn PeterORCID,He Jin-ShengORCID,Bauhus JürgenORCID,Guan Zhen-Huan,Scholten ThomasORCID

Abstract

Soil phosphorus (P) is essential for plant growth and influences biological processes. Determining the amounts of available P to plants has been challenging, and many different approaches exist. The traditional Hedley sequential extraction method and its subsequent modification are applied to determine different soil P forms, which is critical for understanding its dynamics and availability. However, quantifying organic and inorganic P (Po & Pi) in different extracts is labor-intensive and rarely used with large sample numbers. As an alternative, near-infrared spectroscopy (NIRS) has been employed to determine different P fractions at reasonable costs in a short time. This study aimed to test whether the analysis of P fractions with NIRS is an appropriate method to disentangle the effects of P limitation on high-altitude grassland ecosystems, particularly with fertilizer amendments. We explored NIRS in soils from the grassland soil samples on the northern Tibetan Plateau. First, we extracted the P fractions of 191 samples from the Haibei Alpine Meadow Ecosystem Research Station at four depth increments (0–10 cm, 10–20 cm, 20–40 cm, and 40–70 cm), including nutrient additions of nitrogen (N) and P. We compared the results of the Hedley extraction with the laboratory-based NIRS model. The fractionation data were correlated with the corresponding NIRS soil spectra; the coefficient of determination (R2) of the NIRS calibrations to predict P in P fractions ranged between 0.12 and 0.90; the ratio of (standard error of) prediction to the standard deviation (RPD) ranged between 1.07 and 3.21; the ratio of performance to inter-quartile distance (RPIQ) ranged from 0.3 to 4.3; and the model prediction quality was higher for Po than Pi fractions, and decreased with fertilizer amendment. However, the external-validation results were not precise enough for the labile P fractions (RPD < 1.4) due to the limited number of samples. The results indicate that using NIRS to predict the more stable P pools, combined with Hedley fractionation focusing on the labile P pool, can be a promising approach for soils in alpine grasslands on the Tibetan Plateau.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3