Comparative Transcriptome Analyses between Resistant and Susceptible Varieties in Response to Soybean Mosaic Virus Infection

Author:

Chen Yuanyuan,Shen Ying,Chen Boyu,Xie Lijun,Xiao Yanmin,Chong Zheng,Cai Han,Xing Guangnan,Zhi Haijian,Li KaiORCID

Abstract

Soybean mosaic virus (SMV) is a worldwide and hardly controlled virus disease in soybean. Kefeng-1 is an elite variety resistant to SMV in China. In order to discover resistance genes and regulation networks in Kefeng-1, we analyzed transcriptome data of resistant (Kefeng-1) and susceptible (NN1138-2) soybean varieties in response to infection of the SMV strain SC18 at 0, 6, and 48 hours post-inoculation (hpi) and 5 days post-inoculation (dpi). Many differentially expressed genes (DEGs) were identified with Kefeng-1 and NN 1138-2. Based on the enrichment analysis for gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, we found that 48 hpi was the best time point for the defense response of the two soybean varieties in response to the SMV infection. The expression of seven candidate genes was further verified by qRT-PCR and was relatively consistent with the results of RNA-Seq. The expression of genes for Glyma.11G239000 and Glyma.18G018400, members of the ethylene-insensitive 3/ethylene-insensitive3-like (EIN3/EIL) protein family involved in ETH, were downregulated in NN1138-2 but not in Kefeng-1 and the expression of Glyma.14G041500 was upregulated in Kefeng-1 at 5 dpi. The expression of jasmonic acid repressor genes (TIFY/JAZ) was downregulated in NN1138-2 but not in Kefeng-1. NPR1 involved in the salicylic acid signaling pathway was downregulated in NN1138-2 at 48 hpi but upregulated in Kefeng-1. It shows that ethylene, jasmonic acid, and salicylic acid signaling pathways may be involved in the disease resistance process to the SMV strain SC18. Our findings would help to understand the molecular mechanism of soybean resistance to SMV.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3