Abstract
Bacillus velezensis manifests robust biocontrol activity against fungal plant pathogens; however, its antiviral activity has rarely been investigated. Bacillus velezensis strain PEA1 was isolated, characterized, and evaluated for antifungal and antiviral activities against Fusarium oxysporum MT270445 and cucumber mosaic virus (CMV) MN594112. Our findings proved that strain PEA1 had intense antagonist activity against F.oxysporum. Under greenhouse conditions, the antiviral activities (protective, curative, and inactivation) of PEA1-culture filtrate (CF) on Datura stramonium plants were assayed, using a half-leaf method. The inactivation treatment exhibited the highest inhibition rate (97.56%) and the most considerable reduction of CMV-CP accumulation levels (2.1-fold) in PEA1-CF-treated plants when compared with untreated plants (26.9-fold). Furthermore, PEA1-CF induced systemic resistance with significantly elevated transcriptional levels of PAL, CHS, HQT, PR-1, and POD genes in D. stramonium leaves after all treatments. Gas chromatography‒mass spectrometry analysis showed that pyrrolo[1,2-a]pyrazine-1,4-dione is the main compound in the PEA1-CF ethyl acetate extract, which may act as an elicitor molecule that induces plant systemic resistance and inhibits both fungal growth and viral replication. Consequently, B. velezensis can be considered as a potential source for the production of bioactive compounds for the management of plant diseases. To our knowledge, this is the first report of the antiviral activity of B. velezensis against plant viral infection.
Funder
Deanship of Scientific Research, King Saud University
Subject
Agronomy and Crop Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献