A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse

Author:

Zhang Fengyin,Luo Jing,Yuan Changhong,Li Chunying,Yang Zaiqiang

Abstract

With the expansion of cucumber cultivation, many growers continue to experience extreme weather and environmental issues. This study aimed to examine and model the effects of low temperature (LT) and poor light (PL) stresses on cucumber growth. The experiment was designed as an orthogonal experiment that analyzed temperature, light, and duration. The daily maximum/minimum temperatures of the experiment were set as per the following four levels: 13 °C/3 °C, 16 °C/6 °C, 19 °C/9 °C, 22 °C/12 °C, and the control at 28 °C/18 °C. The light was divided into two levels: 200 μmol∙m−2∙s−1 and 400 μmol∙m−2∙s−1, with 800 μmol∙m−2∙s−1 as the control. Treatment duration was set at 2, 5, 8, and 11 days. Stress with different LT, PL, and duration was expressed using the stress effect (0–1), which decreased with an increase in stress level. Meanwhile, treatment with a temperature of 3 °C and light of 400 μmol∙m−2∙s−1 for 11 days had the smallest effect on stress, which was only 67% of that of the control following 50 days of recovery, and had the most severe effect on cucumber growth. The proportion of dry weight allocated to leaves and stems decreased with increasing low temperatures and poor light stress, but the proportion allocated to fruit increased. The highest percentage of fruit distribution was found in the treatment with temperature of 9 °C, light of 200μmol∙m−2∙s−1, and 11 days duration, being 3.57 times higher than the control. In order to better investigate the effects of LT and PL stress on cucumber growth, light and temperature effect (LTE), growing degree days (GDD), and product of thermal effectiveness and PAR (TEP) models were developed based on temperature and light. The root mean square error (RMSE) of the LTE model was found to be 4.214 g∙plant−1, 36.3% of that of the GDD model and 78.8% of that of the TEP model, better simulating the above-ground dry weight of cucumber plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3