Chemical Characteristics of Dark-Brown Humic-like Substances Formed from the Abiotic Condensation of Maillard Precursors with Different Glycine Concentrations

Author:

Wang Nan,Zhang Qi,Han Weihua,Bai Chengxin,Hou Boyang,Liu Yue,Wang ShuaiORCID

Abstract

The Maillard reaction is a type of nonenzymic browning process, and it is also an abiotic humification process of sugars, amino acids and phenols catalyzed by δ-MnO2. It is considered to be one of the possible pathways for the formation of humic-like substances (HLS). The change in the ratio of the Maillard precursors inevitably affects the chemical characteristics of HLS, among which the effect of amino acids concentration on the humification pathway and HLS formation has not yet been reported. In view of this, the glucose, glycine and catechol were chosen as tested objects for the present study, and the method of liquid shake-flask culture was adopted. Both catechol and glucose with fixed concentrations were added into a phosphate buffer solution (pH 8.0) containing δ-MnO2, and only the glycine concentration was adjusted in the sterile culture system. The supernatant solution and dark-brown residue were collected dynamically within 360 h through the centrifugation method. The E4/E6 ratio and total organic C (TOC) of the supernatant solution, the C content of the humic-like acid (CHLA), CHLA/CFLA (C content of fulvic-like acid) ratio and FTIR spectra of the dark-brown residue and the E4/E6 ratio and atomic ratio of humic-like acid (HLA) extracted from the dark-brown residue were systematically analyzed to reveal the effect of different glycine concentrations on the abiotic humification pathways and the characteristics of related products from the Maillard reaction under abiotic processes. The results showed that (1) Under the influence of the addition of different glycine concentrations, the structure of organic molecules in the supernatant after culture tended to be simplified, and the addition of three lower concentrations (0, 0.03 and 0.06 mol/L) of glycine made the E4/E6 ratios increase by 100.4%, 57.7% and 33.0%, respectively, and obtained a simpler structure of organic molecules in the supernatant than that of 0.12 and 0.24 mol/L glycine, which made the E4/E6 ratios increase by 5.6% and 18.0%, merely. After culture, the TOC content in the supernatant solution of each treatment decreased to varying degrees, and the addition of Maillard precursors effectively inhibited the loss of TOC in the supernatant solution, especially the addition of glycine at a concentration of 0.06 mol/L, which only reduced the TOC content by 0.1%. (2) The greater the concentration of glycine added, the higher proportion of aromatic C structure existed in the dark-brown residue. O-containing functional groups from the dark-brown residue and δ-MnO2 were bound to each other through hydrogen bonding, and (3) During the culture process, the CHLA treated with the addition of Maillard precursors was significantly higher than that of the CK control. Compared with the result at 0 h, the addition of higher concentrations of glycine (0.12 and 0.24 mol/L) were more conducive to the formation of HLA, making the CHLA increase by 666.2% and 422.7%, which were much more than these results for 256.6%, 282.2% and 360.0% from three concentrations of glycine (0, 0.03 and 0.06 mol/L) at the end of culture. After culture, the structure of HLA molecules treated by the addition of Maillard precursors became more complex, and the overall performance showed that the higher the concentration of added glycine, the more complex the HLA molecules became. Under the coexistence of glucose and catechol, the addition of glycine could promote abiotic condensation and improve the condensation degree of HLA molecules, among which the addition of 0.12 mol/L glycine had the most significant effect. Compared with the CK control, the addition of Maillard precursors could achieve a higher increase in the CHLA/CFLA ratio, which was more beneficial to the improvement of humus quality.

Funder

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3