Research Status and Prospects on the Construction Methods of Temperature and Humidity Environmental Models in Arbor Tree Cuttage

Author:

Wang Xu1ORCID,Liu Lixing1,Xie Jinyan1,Wang Xiaosa1,Gu Haoyuan1,Li Jianping12,Liu Hongjie12,Wang Pengfei12,Yang Xin12

Affiliation:

1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China

2. Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China

Abstract

The environmental temperature and humidity are crucial factors for the normal growth and development of arbor tree cuttings by altering their hormone levels and influencing their physiological activities. Developing a temperature and humidity environmental model for arbor tree cuttings serves as a key technique to improve the adjustment performance of environmental parameters in facility agriculture systems and enhance the rooting rate of cuttings. This paper provides a comprehensive summary of current research on the inherent characteristics of cuttings and the factors influencing environmental temperature and humidity. It explores the mechanisms of interaction between the inherent characteristics of cuttings and the factors influencing environmental temperature and humidity. This paper investigates the interactive relationships among the factors affecting environmental temperature and humidity. It analyzes methods to improve the efficiency of constructing temperature and humidity environmental models for arbor tree cuttings. To enhance the transferability of the environmental model, the necessary physiological activities under the influence of plant hormones are generalized as common physiological traits in the growth and development of cuttings. In addition, this paper explores the factors influencing the air and substrate temperature and the humidity in facility agriculture systems as well as two types of facilities for controlling environmental temperature and humidity. Furthermore, it reviews the research progress in environmental models from both mechanistic and data-driven perspectives. This paper provides a comparative analysis of the characteristics associated with these two model categories. Building upon this, the paper summarizes and discusses methods employed in constructing temperature and humidity environmental models for arbor tree cuttings. In addition, it also anticipates the application of deep learning techniques in the construction of temperature and humidity environmental models for arbor cuttings, including utilizing machine vision technology to monitor their growth status. Finally, it proposes suggestions for building physiological models of fruit tree-like arbor cuttings at different growth stages. To enhance the transferability of environmental models, the integration of physiological models of cuttings, environmental models, and control system performance are suggested to create an environmental identification model. This paper aims to achieve control of the common physiological activities of cuttings.

Funder

earmarked fund for CARS

Earmarked Fund for Hebei Apple Innovation Team of Modern Agro-industry Technology Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3