Interaction of ZnO Nanoparticles with Metribuzin in a Soil–Plant System: Ecotoxicological Effects and Changes in the Distribution Pattern of Zn and Metribuzin

Author:

García-Gómez Concepción1ORCID,Pérez Rosa Ana1ORCID,Albero Beatriz1ORCID,Obrador Ana2ORCID,Almendros Patricia2ORCID,Fernández María Dolores1ORCID

Affiliation:

1. Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra, A Coruña, km 7.5, 28040 Madrid, Spain

2. Chemical & Food Technology Department, Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Universidad Politécnica de Madrid (UPM), Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain

Abstract

The use of zinc oxide nanoparticles (ZnO NPs), applied as a possible micronutrient source, in conjunction with organic pesticides in agricultural soils has the potential to alter the environmental behavior and toxicity of these chemicals to soil biota. This research examines the joint effects of ZnO NPs and the herbicide metribuzin (MTZ) on phytotoxicity to plants, toxicity to soil microorganisms, and the accumulation of Zn and MTZ in plants. After 23 days, effects on growth, photosynthetic pigment content, and oxidative stress biomarkers in bean plants (Phaseolus vulgaris) and soil enzymatic activities were evaluated. Additionally, the amounts of Zn and MTZ (and the latter’s main metabolites) in soil and plant tissues were quantified. ZnO NPs reduced ammonium oxidase activity and growth among MTZ-stressed plants while reducing photosynthetic pigment levels and enhancing antioxidant enzymatic activities. MTZ had a marginal impact on the availability and accumulation of Zn in plant tissues, although significant effects were observed in some specific cases. In turn, ZnO NPs drastically affected MTZ degradation in soil and influenced MTZ accumulation/metabolization in the bean plants. Our findings indicate that the indirect effects of ZnO NPs, through their interaction with commonly used organic pesticides, may be relevant and should be taken into account in agricultural soils.

Funder

Community of Madrid

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3