Performance Analysis and Optimization for Steering Motion Mode Switching of an Agricultural Four-Wheel-Steering Mobile Robot

Author:

Qu Jiwei,Li Hongji,Zhang Zhe,Xi XiaoboORCID,Zhang Ruihong,Guo Kangquan

Abstract

This study focuses on a wheeled mobile robot used for detection, weeding and information monitoring in agriculture. However, it is difficult to reach satisfactory motion mode switching (MMS) performance. This paper aimed at exploring the optimal control parameters guaranteeing smooth MMS of four-wheel steering. Single factor tests were first conducted using a test-bench. A binary quadratic general rotation combination test was designed to obtain the optimal parameters. An entropy weight method was introduced to construct the four indexes as a comprehensive index. The optimal combination of the parameters was obtained, based on the regression equation. The results showed that the two factors and their interaction had a significant impact on the comprehensive index (p < 0.05). The best combinations of the speed of the stepper motor and locking voltage were 56 r·min−1 and 3.96 V for 15° steering, 72 r·min−1 and 4.35 V for 30°, and 107 r·min−1 and 5.50 V for 45°, respectively. A verification test was performed using the prototype of the robot chassis. The results demonstrated that the MMS process was smooth and stable, and the proposed method was effective. This study is a beneficial exploration of the experimental method concerning wheeled robots.

Funder

Jiangsu Provincial Natural Science Foundation

Jiangsu agricultural science and technology innovation fund

Yangzhou University Interdisciplinary Research Foundation for Crop Science Discipline of Targeted Support

Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project

High-end Talent Support Program of Yangzhou University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3