Evaluation and Application of the AquaCrop Model in Simulating Soil Salinity and Winter Wheat Yield under Saline Water Irrigation

Author:

Zhai Yaming,Huang Mingyi,Zhu Chengli,Xu Hui,Zhang Zhanyu

Abstract

Saline water irrigation has been considered a useful practice to overcome the freshwater shortage in arid and semi-arid regions. Assessing and scheduling the appropriate irrigation water amount, salinity, and timing is essential to maintaining crop yield and soil sustainability when using saline water in agriculture. A field experiment that included two irrigation levels (traditional and deficit irrigation) and three water salinities (0, 5, and 10 dS/m) was carried out in the North China Plain during the 2017/18 and 2018/19 winter wheat growing seasons. AquaCrop was used to simulate and optimize the saline water irrigation for winter wheat. The model displayed satisfactory performance when simulating the volumetric soil water content (R2 ≥ 0.85, RMSE ≤ 2.59%, and NRMSE ≤ 12.95%), soil salt content (R2 ≥ 0.71, RMSE ≤ 0.62 dS/m, and NRMSE ≤ 26.82%), in-season biomass (R2 ≥ 0.89, RMSE ≤ 1.03 t/ha, and NRMSE ≤ 18.92%), and grain yield (R2 ≥ 0.92, RMSE ≤ 0.35 t/ha, and NRMSE ≤ 7.11%). The proper saline water irrigation strategies were three irrigations of 60 mm with a salinity up to 4 dS/m each at the jointing, flowering, and grain-filling stage for the dry year; two irrigations of 60 mm with a salinity up to 6 dS/m each at the jointing and flowering stage for the normal year; and one irrigation of 60 mm with a salinity up to 8 dS/m at the jointing stage for the wet year, which could achieve over 80% of the potential yield while mitigating soil secondary salinization. Nonetheless, the model tended to overestimate the soil moisture and wheat production but underestimate the soil salinity, particularly under water and salt stress. Further improvements in soil solute movement and crop salt stress are desired to facilitate model performance. Future validation studies using long-term field data are also recommended to obtain a more reliable use of AquaCrop and to better identify the influence of long-term saline water irrigation. Finally, AquaCrop maintained a good balance between simplicity, preciseness, and user-friendliness, and could be a feasible tool to guide saline water irrigation for winter wheat.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3