Apical Dominance and Branching in Plantlets of Colt Cherry Lines Expressing Different Light and Auxin Signalling Sensitivities

Author:

Iacona Calogero1,Medori Gabriele2,Thomas Brian3,Roncasaglia Romano4,Dradi Giuliano4,Radicetti Emanuele5ORCID,Mancinelli Roberto2ORCID,Muleo Rosario2ORCID,Forgione Ivano2ORCID

Affiliation:

1. Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy

2. Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University, via S. C. De Lellis, snc., 01100 Viterbo, Italy

3. School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK

4. Vivai Piante Battistini Soc. Agr. s.s., via Ravennate 1500, 47522 Cesena, Italy

5. Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy

Abstract

The establishment of plant architecture requires coordination of distinct processes including shoot branching and apical dominance (AD). AD involves the bud apical shoot, mainly through indole-3-acetic acid (IAA) synthetized by the cells of the meristem and young leaves. The rootward flow generates an auxin gradient in the stem and buds, regulating lateral bud (LB) outgrowth. Phytochromes and AD are involved in the shade-avoidance syndrome in woody plants. However, the underlying mechanisms remain poorly understood. The aim of this study was to evaluate the sensitivity of cherry rootstocks to light, mediated by the photoreceptor phytochrome, and its effect on the role of auxin in driving branching by AD. Pharmacological treatments using transport inhibitors and a competitor of IAA were applied to transgenic lines of Colt cherry rootstock, which showed different sensitivities to light because of the ectopic expression of a rice phyA gene. Results showed different physiological behaviours among the transgenic lines and between themselves and the Colt-wt line. Exogenous IBA inhibited Colt-wt LB outgrowth, and this inhibition was less intense in transgenic lines. The IAA-inhibitors and IAA-competitor promoted branching. In in vitro phyA-transgenic plantlets, the ectopic gene induced greater branching and a higher number of buds developed in new shoots. This work confirms a positive action of phytochrome on lateral branching in cherry rootstock, playing a role in the regulation of AD. Moreover, we suggest that the confined in vitro system might now be used as a phenotyping screening to test the plasticity of the response, highlighting the behaviour of modified genotypes due to an ectopic insertion event by simple and rapid procedures.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3