Vineyard Pruning Weight Prediction Using 3D Point Clouds Generated from UAV Imagery and Structure from Motion Photogrammetry

Author:

García-Fernández MartaORCID,Sanz-Ablanedo EnocORCID,Pereira-Obaya DimasORCID,Rodríguez-Pérez José RamónORCID

Abstract

In viticulture, information about vine vigour is a key input for decision-making in connection with production targets. Pruning weight (PW), a quantitative variable used as indicator of vegetative vigour, is associated with the quantity and quality of the grapes. Interest has been growing in recent years around the use of unmanned aerial vehicles (UAVs) or drones fitted with remote sensing facilities for more efficient crop management and the production of higher quality wine. Current research has shown that grape production, leaf area index, biomass, and other viticulture variables can be estimated by UAV imagery analysis. Although SfM lowers costs, saves time, and reduces the amount and type of resources needed, a review of the literature revealed no studies on its use to determine vineyard pruning weight. The main objective of this study was to predict PW in vineyards from a 3D point cloud generated with RGB images captured by a standard drone and processed by SfM. In this work, vertical and oblique aerial images were taken in two vineyards of Godello and Mencía varieties during the 2019 and 2020 seasons using a conventional Phantom 4 Pro drone. Pruning weight was measured on sampling grids comprising 28 calibration cells for Godello and 59 total cells for Mencía (39 calibration cells and 20 independent validation). The volume of vegetation (V) was estimated from the generated 3D point cloud and PW was estimated by linear regression analysis taking V as predictor variable. When the results were leave-one-out cross-validated (LOOCV), the R2 was found to be 0.71 and the RMSE 224.5 (g) for the PW estimate in Mencía 2020, calculated for the 39 calibration cells on the grounds of oblique images. The regression analysis results for the 20 validation samples taken independently of the rest (R2 = 0.62; RMSE = 249.3 g) confirmed the viability of using the SfM as a fast, non-destructive, low-cost procedure for estimating pruning weight.

Funder

Junta de Castilla y León

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3