Optimal Drip Fertigation Regimes Improved Soil Micro-Environment, Root Growth and Grain Yield of Spring Maize in Arid Northwest China

Author:

Li Zhijun,Zou Haiyang,Lai Zhenlin,Zhang FucangORCID,Fan JunliangORCID

Abstract

Understanding the spatial distributions of soil water, temperature and nutrients as well as their effects on maize growth and grain yield is vital for optimizing drip fertigation regimes. In this study, a 2 year field experiment was conducted on drip-fertigated spring maize with plastic mulching in arid northwestern China in 2015 and 2016. Four irrigation levels were set: as I60 (60% ETc; ETc is crop evapotranspiration), I75 (75% ETc), I90 (90% ETc) and I105 (105% ETc) in 2015; and as I60 (60% ETc), I80 (80% ETc), I100 (100% ETc) and I120 (120% ETc) in 2016. Two fertilization rates of N-P2O5-K2O were set: as F180 (180-90-90) and F240 (240-120-120). The results showed that the average soil water content in the deeper soil layer (80–120 cm) increased with the increase in irrigation level, and the lowest average soil water content in the 0–80 cm soil layer occurred under I95 in 2015 and under I100 in 2016. The irrigation level more significantly influenced the soil temperature at 5 cm than at the other depths. With the decrease in the irrigation level and progression of the growth period, the soil temperature increased. The soil nitrate nitrogen content in the root zone decreased with increasing irrigation level. The largest soil nitrate nitrogen content at the 0–100 cm depth occurred under I60 in both 2015 and 2016. Significant differences were observed for root length density in the 0–20 cm soil layer at various lateral locations. In deeper (60–100 cm) soil layers, the root length density under I75 (2015) and I80 (2016) was greater than at other depths. Grain yield, water use efficiency (WUE) and partial factor productivity (PFP) increased with the increase in irrigation level in 2015, while it increased and then decreased in 2016. I105F180 achieved the maximum grain yield (18.81 t ha−1), WUE (3.32 kg m−3), and PFP (52.26 kg kg−1) in 2015, while I100F180 achieved the maximum grain yield (20.51 t ha−1), WUE (3.99 kg m−3), and PFP (57.02 kg kg−1) in 2016. The optimal drip fertigation regimes for spring maize in arid northwest China were recommended as 90–100% ETc and 180-90-90 (N-P2O5-K2O) kg hm−2.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3