Author:
Jia Shuangjie,Li Hongwei,Jiang Yanping,Tang Yulou,Zhao Guoqiang,Zhang Yinglei,Yang Shenjiao,Qiu Husen,Wang Yongchao,Guo Jiameng,Yang Qinghua,Shao Ruixin
Abstract
Female panicles (FPs) play an important role in the formation of yields in maize. From 40 days after sowing to the tasseling stage for summer maize, FPs are developing and sensitive to drought. However, it remains unclear how FPs respond to drought stress during FP development. In this study, FP differentiation was observed at 20 and 30 days after drought (DAD) and agronomic trait changes of maize ears were determined across three treatments, including well-watered (CK), light drought (LD), and moderate drought (MD) treatments at 20, 25, and 30 DAD. RNA-sequencing was then used to identify differentially expressed genes (DEGs) in FPs at 30 DAD. Spikelets and florets were suppressed in LD and MD treatments, suggesting that drought slows FP development and thus decreases yields. Transcriptome analysis indicated that 40, 876, and 887 DEGs were detected in LD/CK, MD/CK, and MD/LD comparisons. KEGG pathway analysis showed that ‘biosynthesis of other secondary metabolites’ and ‘carbohydrate metabolism’ were involved in the LD response, whereas ‘starch and sucrose metabolism’ and ‘plant hormone signal transduction’ played important roles in the MD response. In addition, a series of molecular cues related to development and growth were screened for their drought stress responses.
Subject
Agronomy and Crop Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献