Regional Winter Wheat Yield Prediction and Variable Importance Analysis Based on Multisource Environmental Data

Author:

Xu Hao1ORCID,Yin Hongfei2,Liu Yaohui3ORCID,Wang Biao3,Song Hualu1,Zheng Zhaowen4,Zhang Xiaohu4,Jiang Li5,Wang Shuai1ORCID

Affiliation:

1. Shandong Academy of Agricultural Sciences, Jinan 250100, China

2. School of Finance and Taxation, Shandong University of Finance and Economics, Jinan 250014, China

3. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

4. National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China

5. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Timely and accurate predictions of winter wheat yields are key to ensuring food security. In this research, winter wheat yield prediction models for six provinces were established using a random forest (RF) model. Two methods were employed to analyze feature variables. RF partial dependence plots were generated to demonstrate the nonlinear relationships between the feature variables and yield, and bivariate Moran’s I was considered to identify the spatial associations between variables. Results showed that when environmental data from key growth periods were used for prediction model establishment, the root mean square error (RMSE) varied between 200 and 700 kg/ha, and the coefficient of determination (R2) exceeded 0.5. Feature variable analysis results indicated that the longitude, latitude, topography and normalized difference vegetation index (NDVI) were important variables. Below the threshold, the yield gradually increased with increasing NDVI. Bivariate Moran’s I results showed that there was zonal distribution of meteorological elements. Within a large spatial range, the change in environmental variables due to the latitude and longitude should be accounted for in modeling, but the influence of collinearity between the feature variables should be eliminated via variable importance analysis.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3