Recovering Alpine Secale cereale (Rye) Varieties: Insights from Genetic, Agronomic, and Phytochemical Analyses to Support Sustainable Mountain Agriculture Economy

Author:

Gentili Rodolfo1ORCID,La Ferla Barbara1ORCID,Cardarelli Elisa12ORCID,Gusmeroli Fausto3,Della Marianna Gianpaolo3,Parolo Gilberto3,Maestroni Giancarla4,Citterio Sandra1ORCID

Affiliation:

1. Department of Earth and Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy

2. Agency for Health Protection of the Metropolitan Area of Milan (ATS), 20100 Milan, Italy

3. Fondazione Fojanini, Via Valeriana 32, 23100 Sondrio, Italy

4. Associazione per la Coltura del Grano Saraceno, Teglio, 23100 Sondrio, Italy

Abstract

Rye (Secale cereale L.) cultivation has a long history in the Alpine region, where local ecotypes have been honed through generations of human selection. Despite the introduction of commercial varieties during the 20th century, traditional ecotypes are believed to persist in Valtellina, especially in the medium/upper valley (Teglio and Bormio). Our study aims to identify and preserve these local rye ecotypes by comparing them to commercial varieties. We examined 14 rye accessions through population genetic analyses (by using eight SSR makers), agronomic trials (germplasm characters, plant traits, and yields), and phytochemical analyses (total phenolic compound, flavonoids, and the radical scavenging activity). Two commercial varieties were used—one from Poland, previously genetically characterized (C_POL_P1; i.e., P1 ancestry), and one with an unknown origin. Additionally, we analyzed eleven accessions from Valtellina (medium and upper valley) and one from another alpine valley in South Tirol (Laimburg; LAI). Molecular markers analysis revealed the presence of two distinct genetic lineages: the first (P1) comprised all Teglio accessions and the commercial one from Poland, while the second (P2) grouped the two alpine accessions from Bormio (upper Valtellina) and South Tirol, along with a commercial one of uncertain origin. The clusters P2 exhibited significantly lower average values of the number of alleles (z = 2.03; p < 0.05), Shannon index (z = 2.35; p < 0.05), and expected heterozygosity (z = 1.97; p < 0.05) than in P1. Significant differences were observed in plant traits and agronomic performance between P1 and P2 accessions, with the latter displaying superior traits. For instance, the seed weight of germplasm was the highest in P2 (H(chi2) = 22.44; p < 0.001). Phytochemical analyses did not reveal a clear pattern between genetic lineages but identified some very well-performing Valtellina landraces in terms of scavenging activity. Characterizing these local rye varieties helps establish a short food supply chain to support Valtellina’s mountain economy. The medium valley (P1) and upper valley (P2) varieties have the potential for agroecological valorization, benefiting local farmers. Phytochemical analyses identified better accessions within P1 and P2 for nutraceutical use and commercialization. Additionally, selecting and conserving resilient ecotypes can address future challenges from extreme climate conditions.

Funder

REGIONE LOMBARDIA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3