Methodological Advances in the Design of Photovoltaic Irrigation

Author:

Calero-Lara MartínORCID,López-Luque RafaelORCID,Casares Francisco JoséORCID

Abstract

In this study, an algorithm has been developed that manages photovoltaic solar energy in such a manner that all generated power is delivered to the system formed by a pump and irrigation network with compensated emitters. The algorithm is based on the daily work matrix that is updated daily by considering water and energy balances. The algorithm determines an irrigation priority for the sectors of irrigation of the farm based on programmed irrigation time and water deficits in the soil and synchronises the energy produced with the energy requirement of the hydraulic system according to the priority set for each day, obtaining the combinations of irrigation sectors appropriate to the photovoltaic power available. It takes into account the increment/decrease in the pressure of the water distribution network in response to increases/decreases in photovoltaic energy by increasing/decreasing the rotational speed of the pump, thus increasing/decreasing the power transferred to the system. The application to a real case of a 10-hectare farm divided into four sectors implies an efficient use of the energy of 26.15% per year and savings in CO2 emissions of 6.29 tonnes per year.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3