Response of Organic Fertilizer Application to Soil Microorganisms and Forage Biomass in Grass–Legume Mixtures

Author:

Yan Huilin1,Zhou Xueli12,Zheng Kaifu1,Gu Songsong13,Yu Hao4,Ma Kun1,Zhao Yangan1,Wang Yingcheng1,Zheng Hua5ORCID,Liu Hanjiang2,Shi Dejun2,Lu Guangxin1,Deng Ye3ORCID

Affiliation:

1. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

2. Qinghai Province Grassland Improvement Experimental Station, Gonghe 813000, China

3. CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

4. College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China

5. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

It has been widely recognized that organic fertilizer (OF) application under monoculture and continuous cropping can change the microbial community and increase forage biomass in the Qinghai–Tibet Plateau. However, as a commonly used grassland planting pattern, the way in which grass–legume mixtures respond to OF application remains unclear. To clarify application effects of organic fertilizer in the grass–legume mixtures, we conducted a field experiment at the Qinghai–Tibet Plateau and collected the rhizospheric and bulk soils to reveal their microbial community by using high-throughput sequencing and molecular ecological networks. It was found that OF application changed the microbial community and increased the forage biomass under monoculture. However, in grass–legume mixtures, we found that OF application did not promote the increase of forage (Gramineae) biomass (Student t-test: p > 0.05). By analyzing both prokaryote and fungal communities, it was found that OF application had a greater impact on bulk soil microorganisms than on those of the rhizosphere in grass–legume mixtures. Co-occurrence network analysis showed that the rhizosphere and bulk soil networks of grass–legume mixtures were significantly more vulnerable under OF treatment (vulnerability of prokaryotes in grass: 0.1222; vulnerability of prokaryotes in legumes: 0.1730; fungal vulnerability in grass: 0.0116; fungal vulnerability in legumes: 0.0223) than non-OF treatment (vulnerability of prokaryotes in grass: 0.1015; vulnerability of prokaryotes in legumes: 0.1337; fungal vulnerability in grass: 0.0046; fungal vulnerability in legumes: 0.0126), which indicated that OF application did not provide favorable conditions for microbial interactions in grass–legume mixtures. In addition, structural equation modeling showed that OF application had some significant negative impacts on soil physicochemical properties and the robustness of the prokaryote community. The robustness of fungi had a significant negative (p < 0.001) impact on forage biomass, but OF application had no significant (p > 0.05) direct impact on the forage biomass, which indicated that the OF did not promote forage biomass in grass–legume mixtures. These results suggest that the application of organic fertilizer is unnecessary for grass–legume mixtures, because it does not promote the interactions between rhizospheric microbes and forage.

Funder

International Cooperation Project of Key Research and the Development and Transformation of Science and Technology Department of Qinghai Province

Key R&D and Transformation Projects in Qinghai Province

National Key Research and Development Program of China

Fundamental Research Project of the Qinghai Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3