Water Footprint Assessment of Agricultural Crop Productions in the Dry Farming Region, Shanxi Province, Northern China

Author:

Wang Lu1234,Yan Cunjie1234,Zhang Wenqi1234ORCID,Zhang Yinghu1234

Affiliation:

1. State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China

2. School of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

4. Jiangsu Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China

Abstract

Exploring the crop production water footprint and their driving factors is of significant importance for management of agricultural water resources. However, how do we effectively assess the total agricultural water consumption and explore the significance of their driving factors, i.e., population, economy, and agricultural production conditions, using a backpropagation neural network (BPNN)? It is still ambiguous. Water consumption for crops during the growing season is explicitly explored by way of water footprint indicators (green water footprint, WFPg, and blue water footprint, WFPb). This study provides new insights into the factors driving the changes in crop production water footprint in Taiyuan City over the period of 2005–2021. Simulations of crop evapotranspiration using the CROPWAT model were quantified. The results showed that Taiyuan City has a low crop yield level below the average level of China, with the highest crop yield in maize. The crop production water footprint in Taiyuan City showed a non-linearly decreasing trend over time. The average annual crop production water footprint was 187.09 × 103 m3/kg in Taiyuan City, with the blue water footprint and green water footprint accounting for 63.32% and 36.68%, respectively. The crop production water footprint in the west and north of Taiyuan City was significantly higher than those in other areas, accounting for 42.92% of the total crop production water footprint. Oilseed crops contributed most to the total crop production water footprint, accounting for 47.11%. The GDP and total sown area of crops were more important for the changes in WFPb. Agricultural machinery power and agriculture-to-non-agriculture ratio were more important for the changes in WFPg. Agricultural machinery power and GDP were more important for the changes in IWFP. In-depth analysis of the factors driving the changes in crop production water footprint is dramatically important for agricultural decision makers to mitigate water resource pressure in Taiyuan City.

Funder

State Key Laboratory of Sustainable Dryland Agriculture

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3