Identification of Stress Responsive NAC Genes in Casuarina equisetifolia L. and Its Expression Analysis under Abiotic Stresses

Author:

Li Xiaomei1,Li Nan2,Wen Dandan1,Yu Jianfeng1,Hong Jiadu1,Wu Mengjie1,Cheng Longjun1,Meng Shuai1

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

2. Zhejiang Forest Resources Monitoring Centre, Hangzhou 310020, China

Abstract

NAC (NAM, ATAF and CUC)-like transcription factors, a class of plant-specific transcription factors, play a pivotal role in plant growth, development, metabolism, and stress response. Notably, a specific subclass of NAC family, known as SNAC (stress-responsive NAC), is particularly involved in the plant’s response to abiotic stress. As a very useful tree, Casuarina equisetifolia L. also has excellent stress resistance properties. To explore gene resources of C. equisetifolia which are associated with stress resistance and the molecular mechanisms that it employed is very helpful to its molecular-assisted breeding. In this study, 10 CeSNAC transcription factors were identified by constructing the phylogenetic tree of 94 CeNACs from the genome of C. equisetifolia L. together with 79 SNAC in different plant species. Phylogenetic tree analysis revealed that these 10 CeSNAC genes are classified into the ATAF (Arabidopsis transcription activation factor), NAP (NAC-like, activated by AP3/P1), and AtNAC3 subfamilies of the NAC family, all featuring the typical NAM (no apical meristem) domain, with the exception of CeSNAC7. In addition, all NAC transcription factors, except CeSNAC9, were localized in the nucleus. Examination of the CeSNAC promoter unveiled the presence of stress response elements such as a STRE (stress responsive element), an MBS (MYB binding site), an ABRE (abscisic acid responsive element) and a LTR (low temperature responsive element). Under various stress treatments, the majority of CeSNAC expressions exhibited induction in response to low temperature, drought, and high salt treatments, as well as ABA (abscisic acid) treatment. However, CeSNAC6, CeSNAC7, and CeSNAC9 were found to be inhibited specifically by drought treatment. Additionally, only CeSNAC3 and CeNAC9 expression was hindered while the rest of the CeSNAC expression were induced by MeJA (methyl jasmonate) treatment. These findings shed light on the relationship between different CeSNAC genes and their responses to abiotic stress conditions, providing valuable insights for further research into CeSNAC functions and aiding the development of stress-resistant varieties in C. equisetifolia.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3