Growth and Nutrient Element Content of Hydroponic Lettuce are Modified by LED Continuous Lighting of Different Intensities and Spectral Qualities

Author:

Liu WenkeORCID,Zha Lingyan,Zhang Yubin

Abstract

LED red (R) and blue (B) continuous light (CL) is a potential efficient way to increase plant productivity of plant factory with artificial light (PFAL), but limited information was explored about their effects on plant mineral nutrition. In an environmentally controlled plant factory with artificial light (PFAL), the effects of CL of different intensities and spectral qualities, emitted by R and B LEDs on growth and nutrient element content and accumulation of lettuce (Lactuca sativa L.), were conducted in three hydroponic experiments. Two treatments, normal light (12 h/12 h) and CL (24 h/0 h) in experiment 1, three CL intensities (100, 200 and 300 μmol·m−2·s−1) in experiment 2, and three CL light qualities (1R:3B, 1R:1B and 3R:1B) in experiment 3 were designed. The results showed that CL significantly increased the fresh and dry lettuce shoot biomass compared with normal light, and shoot fresh and dry biomass increased with the intensity increment of CL. In experiment 3, shoot fresh biomass was great under high R light proportion CL treatment, while dry shoot biomass remained unchanged. Both CL and CL with increased intensities promoted shoot C content and accumulation in lettuce. CL reduced N, P, K, Ca, Mg, Cu and Zn contents in lettuce shoot, while Fe and Mn contents did not change compared to NL. Moreover, CL increased Ca, Fe and Mn accumulation. 100–200 μmol·m−2·s−1 CL facilitated N, P, Ca, Mg, Fe, Mn, Cu and Zn contents in shoot, but K content was not influenced compared with 300 μmol·m−2·s−1. The data showed that high B light ratio (75%) facilitated C content comparison with low B ratios (50% and 25%). However, lettuce grown under 3R1B treatment had the higher C accumulation. Shoot N, P, K, Ca, Mg, Fe, Mn and Zn contents were higher under 1R1B treatment, and Cu content did not affected by light quality. Moreover, accumulation of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu in shoot was higher under 1R1B treatment, while P, Ca, Mg, Mn accumulation under 3R1B treatment was the lowest. In conclusion, CL tends to reduce shoot mineral element contents due to dilution effect as shoot dry weight increases compared to NL. However, long-term (12 days) CL composed of 1R1B, 100–200 μmol·m−2·s−1 tends to obtain relative higher K, Ca, Fe and Zn contents in the greater dry lettuce shoot.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3