Transcriptome Analysis of Vicia villosa in Response to Low Phosphorus Stress at Seedling Stage

Author:

Mao Linlin1,Zhu Ruili1,Yi Keke1,Wang Xiubin1,Sun Jingwen1

Affiliation:

1. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Vicia villosa, a high-quality green manure crop, helps to increase the content of soil phosphorus (P) by returning to the field. Soil P deprivation is a severe constraint on crop productivity that triggers the low P stress response in plants, which is controlled by various transcriptional regulatory network pathways. Identifying key genes from these transcriptional regulatory networks can help in developing low P-tolerant crops. In this study, we performed physiological observations and transcriptome sequencing of seedlings from the two Vicia villosa varieties, Xu Shao 3 and Soviet Vicia villosa, under P starvation conditions. The results showed that the main root length, plant height, shoot dry weight, root acid phosphatase activity, and inorganic P content of Xu Shao 3 were significantly higher than those of Soviet Vicia villosa under low P conditions. Based on transcriptome data analysis, 183 (shoot) + 144 (root) differential genes (DEGs) between the two varieties were identified; 144 (shoot) + 79 (root) were upregulated, and 69 (shoot) + 65 (root) were downregulated. KEGG analysis found that DEGs in shoots were significantly enriched in photosynthesis pathways, such as vitamin B6 and riboflavin metabolism. Meanwhile, DEGs in roots were enriched in plant signal transduction, fatty acid degradation, citric acid cycle, pentose, glucuronic acid conversion, etc. GO enrichment analysis suggested that DEGs in shoots were significantly enriched in biological processes, including cell response to P stress, intracellular ion homeostasis, etc., and molecular functions, including phosphate ester hydrolase, phosphatase, acid phosphatase activity, etc. Furthermore, DEGs associated with low P tolerance included three acid phosphatases, a phosphoesterase, a sulfoquinovosyl diacylglycerol synthase, a phosphoenolpyruvate carboxylase, six phosphate transporters and glycerol-3-phosphate transporters, eight SPX, and two PHL genes. In conclusion, Xu Shao 3 exhibited stronger inorganic P accumulation ability and a lesser effect on growth than Soviet Vicia villosa under low P conditions, which might result from photosynthesis, sugar, and P metabolism differences between the two varieties. Acid phosphatase, phosphoesterase, phosphoenolpyruvate carboxylase, sulfoquinovosyl diacylglycerol synthase, phosphate transporter, glycerol-3-phosphate transporter, and SPX were key DEGs leading to the difference in low P stress tolerance between the two varieties.

Funder

National Natural Science Foundation of China

Technical System of Green Manure Industry of the Ministry of Agriculture and Rural Areas

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3