Transcriptomic Analysis of L. japonicus Symbiosis Reveals New Candidate Genes for Local and Systemic Regulation of Nodule Function

Author:

Pérez-Delgado Carmen M.,García-Calderón Margarita,Monje-Rueda María Dolores,Márquez Antonio J.,Betti MarcoORCID

Abstract

Several aspects of the legume–rhizobia symbiosis are far from being completely understood, such as the transport of compounds through the symbiosome membrane and the molecular actors (receptors, transcription factors and hormones) involved in the systemic regulation of nodulation. In this work, the transcriptomes of L. japonicus plants growing under symbiotic or non-symbiotic conditions were studied in roots and shoots, in order to look for new genes involved in nodule function and regulation both at the local and systemic levels. Several of the genes differentially expressed in roots were well-known nodulins; however, other genes with unknown function were also discovered that showed univocal nodule-specific expression profiles. Transporters of the Nitrate Transporter1/Peptide Transporter Family family, putative oligopeptide transporters, as well as other uncharacterized transporters were upregulated in nodulated roots. Five transcription factors, as well as receptors/kinases and an f-box domain containing protein, all of unknown function, were also more upregulated in nodulated roots. In the shoots of nodulated plants, genes involved in jasmonic acid and indole-3-acetic acid metabolism were differentially expressed. Moreover, three genes encoding for different glutaredoxins, proteins that were recently involved in the systemic signaling of the Arabidopsis nitrogen status, were highly downregulated in the leaves of nodulated plants. Protein–protein interaction network analysis identified nitrate reductase as a central hub in nitrogen metabolism, and a putative protein of the NADH-ubiquinone complex was highly connected to several SWEET transporters. Clustering analysis of the differentially expressed genes also suggested a possible role for a previously uncharacterized ethylene-responsive transcription factor and for LBD38 homologs in L. japonicus nodule function. The new genes identified in this study represent a promising target for the understating and manipulation of symbiotic nitrogen fixation, with the aim of improving crop legumes’ productivity.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3