Dried Pig Manure from a Cogeneration Plant as a Fertilizer for Nitrate Vulnerable Zones

Author:

Sánchez-Báscones Mercedes,Antolín-Rodríguez Juan,Bravo-Sánchez Carmen,Martín-Gil Jesús,Martín-Ramos PabloORCID

Abstract

Nitrate vulnerable zones (NVZs) are areas considered to be at high risk of water pollution due to an excess of nitrates and, according to European regulations, codes of good agricultural practice are to be implemented by farmers, such as reducing doses of the applied fertilizers, or the use of fertilizers that minimize nitrate leaching. In this work, the influence of organic fertilization with dried pig manure (DPM) as compared to mineral fertilization with ammonium sulfate nitrate with 3,4-dimethylpyrazole phosphate nitrification inhibitor was studied in a barley crop planted in a NVZ in Fompedraza (Valladolid, Spain). Organic and mineral fertilizers were applied at different rates (85, 133 and 170 kg N·ha−1·year−1 vs. 90 and 108 kg N·ha−1·year−1, respectively) over a three-year period, in a randomized complete block design with six treatments and four blocks. DPM-based fertilization resulted in a 65% increase in crop yield as compared to the control soil, reaching 1800 kg·ha−1 for an application rate of 85 kg N·ha−1·year−1. Higher DPM rates were found to increase the electrical conductivity and assimilable phosphorus, potassium, magnesium and organic matter contents, but did not lead to yield enhancements. Final nitrate and ammonium concentrations were lower than 10 mg·kg−1 and 20 mg·kg−1, respectively, and no increase in soil salinity or heavy metal pollution was observed. DPM fertilization should be supplemented with small doses of inorganic fertilizers to obtain crop yields similar to those attained with mineral fertilization.

Funder

Horizon 2020

Junta de Castilla y León

Banco Santander

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3