Metabolic Control of Sugarcane Internode Elongation and Sucrose Accumulation

Author:

Botha Frederik C.1ORCID,Marquardt Annelie2ORCID

Affiliation:

1. Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, QLD 10587, Australia

2. Agriculture and Food, CSIRO, St Lucia, QLD 10587, Australia

Abstract

The relationship between metabolic changes occurring in the developing internodes of sugarcane and the final yield and sugar characteristics is poorly understood due to the lack of integration between phenotypic and metabolic data. To address this issue, a study was conducted where sugarcane metabolism was modeled based on the measurement of cellular components in the top internodes, at two stages of crop development. The study also looked at the effects of Trinexapac-ethyl (Moddus®) on growth inhibition. The metabolome was measured using GC-analysis, while LC-MS/MS was used to measure proteome changes in the developing internodes. These data were then integrated with the metabolic rates. Regardless of the growth rate, internode elongation was restricted to the top five internodes. In contrast, sucrose and lignin accumulation was sensitive to the growth rate. Crossover plots showed that sucrose accumulation only occurred once the cell wall synthesis had slowed down. These data suggest that sucrose accumulation controlled a reduction in sucrose breakdown for metabolic activity and a reduction in demand for carbon for cell wall polysaccharide synthesis. This study also found that nucleotide sugar metabolism appears to be a key regulator in regulating carbon flow during internode development.

Funder

Sugar Research Australia

Queensland Government

Australian Research Council

University of Queensland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3