Organic Cultivation and Deficit Irrigation Practices to Improve Chemical and Biological Activity of Mentha spicata Plants

Author:

Chrysargyris Antonios,Koutsoumpeli Eleni,Xylia Panayiota,Fytrou Anastasia,Konstantopoulou Maria,Tzortzakis NikolaosORCID

Abstract

Intensive crop production and irrational use of fertilizers and agrochemicals have questionable effects on the quality of products and the sustainable use of water for agricultural purposes. Organic cultivation and/or deficit irrigation are, among others, well appreciated practices for a sustainable crop production system. In the present study, spearmint plants (Mentha spicata L.) were grown in different cultivation schemes (conventional versus organic cultivation, full versus deficit irrigation), and effects on the plant physiological and biochemical attributes were examined in two harvesting periods. Deficit irrigation decreased plant growth, but increased total phenolics, flavonoids, and antioxidant capacity of the plants at the second harvest. Spearmint nutrient accumulation was affected by the examined cultivation practices; nitrogen was decreased in organic cultivation, potassium and sodium were elevated at full-irrigated plants, while magnesium, phosphorus, and copper levels were higher at the deficit-irrigated plants. However, conventional/full-irrigated plants had increased height and fresh biomass at the first harvest. Essential oil content decreased at the second harvest in organic and/or deficit treated plants. Additionally, deficit irrigation affected plant growth and delayed the formation of carvone from limonene. The essential oils were further evaluated with regard to their bioactivity on a major vineyard pest Lobesia botrana. Volatile compounds from all essential oils elicited strong electroantennographic responses on female insects antennae, highlighting the role of carvone, which is the major constituent (~70%) in all the tested essential oils. M. spicata essential oils also exhibited larvicidal activity on L. botrana, suggesting the potential of their incorporation in integrated pest management systems.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3